500+
Payloads launched to date!
Begin Your Journey Here

Battery Performance

Battery Performance

Riverside Christian Schools – Battery Performance Experiment provides insight as to whether microgravity has an impact on the performance of current battery technology. Specifically, does microgravity increase or decrease the useful life of a battery as compared to what is normally experienced in Earth gravity.

Customer: Riverside Christian High School
Research: Battery Performance
NanoRacks Facility: Internal NanoLab
Mission Duration: 09/2012 – 09/2013
Mission Status: Complete
More Info: From NASA website


Research Overview
Long-term space travel requires the use of medical and other devices that rely on small coin-cell size batteries as their power source.The experiment provides some insight as to whether current battery technology can meet the power needs of small battery powered medical devices that are required for long-term space travel, or if new batteries need to be developed for these devices.

In addition, it provides insight into the usability of manufacturer testing as a predictor of battery performance in the Space environment. Battery performance in microgravity and Earth gravity is measured and compared to determine if the battery performance in space falls within the normal variation of the battery performances measured on Earth as well as how it compares to manufacturer test results.

The Battery Performance Experiments provides an initial step in the decision process as to whether or not new battery technology is required for small medical devices during long-range space travel as well as insight into the usability of manufacturer testing as a performance predictor in space.

Description
NanoRacks-Riverside Christian Schools-Battery Performance Experiment (NanoRacks-RCS-Battery Performance) consists of two circuits: a Battery Enable circuit and a Battery Test circuit. The Battery Enable circuit is a simple transistor switching circuit that provides sufficient current to energize the Battery Test Enable Relay and turn on the “Enable LED”. Once energized, the Test Enable Relay connects the resistive load to the battery, drawing current from the battery until its total power is expended over time.

RCS Battery Performance Researchers

The battery selected for test is the Panasonic BR1225A, a small lithium coin cell battery used in small medical-like electronic devices. The small resistive load that is used to “drain” battery power (less than 5% of original capability) is composed of two precision trim pots whose load resistance is consistent with those used by the manufacturer during their testing as documented in technical specification data sheets.

Expected time duration to drain the battery is 10-12 days. Battery voltage, battery current, enclosure temperature and humidity, MicroLab source voltages, and time are among the data recorded on a periodic basis. Onboard MicroLab A/D convertors are used to convert analog data to digital data for recording purposes. A snapshot of data is recorded every 10 minutes, and output to the NanoLab Master Controller on an hourly basis.

Similar tests are conducted in the “Ground” environment with multiple batteries for the purpose of comparison of performance of the coin cell in microgravity. “Time to drain” the battery as well as total “mAh” (milliampere-hour) capacity will serve as the primary data to be evaluated, ascertaining whether or not the performance in microgravity falls within the range of performances of the batteries tested in the Earth gravity environment.

Applications
Long-range space travel to Mars and beyond will ultimately require medical devices that use very small batteries. NanoRacks-RCS-Battery Performance provides insight into the predictability of battery performance in space based on manufacturing testing, and how current battery technology can meet the power needs of those devices.

The Battery Performance experiment gives the Riverside Christian students the opportunity to take their classroom math and science theory and move it beyond the laboratory and into a real-world scientific experiment experience in space. In addition, it gives them the opportunity to see what engineering in the technical community is really all about.

Read more about Riverside Christian High School.

Related Missions

Add your Comments and Links


Copyright © 2017 NanoRacks LLC, 555 Forge River Road, Suite 120 Webster, TX 77598. NanoRacks is a XO Markets company. Sitemap
Website Designer : Martin Wilson
Copyright ©2014. All Rights Reserved.