LEIDEN, NETHERLANDS - DECEMBER 2015

THE FUTURE OF ISS UTILIZATION: AN INDUSTRY PERSPECTIVE

#FUTUREISS

MR. CONOR BROWN

NANORACKS EXTERNAL PLATFORMS

#FUTUREISS

PANEL: EXTERNAL INTERNATIONAL SPACE STATION PAYLOADS

- Moderated by Mr. Conor Brown,
 NanoRacks External Payloads Coordinator
- Panelists
 - Mr. Vytenis Buzas, CEO, NanoAvionics
 - Mr. Dennis Elgaard, APAC Sales
 Manager, Gomspace
 - Mr. Michael Bain, Cygnus Cargo, Payload Services Project Manager, OrbitalATKPractical

NANORACKS PHILOSOPHY

- Technology development
- Government payloads
- Education
- International government partnerships

INTERNATIONAL SPACE STATION

CUBESAT DEPLOYMENT

51.6 degree inclination,
 385-415 km

Orbit lifetime 6-12 months

Deployment typically 1-3 months after berthing

 Soft stowage internal ride, several times per year

NANORACKS CUBESAT DEPLOYER

- Each NRCSD can deploy up to 6U of CubeSats
- 8 NRCSD's per airlock cycle

 Total of 48U deployment capability per airlock cycle

GOMX-3 AND AAUSAT-5 INTEGRATION

 Integration of the two CubeSat at the NanoRacks Houston, Texas Facility in June 2015.

GOMX-3 AND AAUSAT-5 LAUNCH

Launched on the Japanese
H-II Transfer Vehicle (HTV)
 on August 19, 2015 along
 with 14 other CubeSats as
 a part of the 6th NRCSD
 Mission.

DEPLOYMENT

GOMX-3 & AAUSAT-5

Kaber Deployer

dummy stowage receptacle

NanoRacks Satellite Separation System

NanoRacks Separation System

Kaber Payload Mass & Volume Constraints

- Max VOLUME: Shown Below
 - Envelope shown is JEM Airlock static envelope. Mission-specific envelope reductions to accommodate tolerance accumulations and micro-G disturbances are TBD.
 - Additional envelope available for other form factors (e.g., a reduction in width allows an increase in length.)
- Maximum mass: 65-75 kg
 - Forward work in progress targeting eventual payload mass of 100Kg

