External Payload Platform

New mission opportunities for small size hosted payloads

Dr. P. C. Steimle*, K. Kuehnel**, K. Woellert***

- * Commercial ISS Applications, Airbus DS GmbH, Bremen, Germany
- ** Airbus DS Space Systems Inc., Houston, Texas
- *** NanoRacks LLC., Washington D. C.

NanoRacks' First Annual ISS Workshop, 17 February 2015

Why being outside ISS?

Controlled environment

Commanding of payload from your desk

Microgravity

Radiation environment of low Earth orbit

Vacuum environment

Thermal environment

View on Earth

View to the stars

External Platform System Design

Standard payload provisions		
Voltage	28 Vdc ± 2 V or 120 Vdc as option	
Total power	30 W at 28 Vdc	
Maximum current	2 A	
USB 2.0 bus	5 Vdc / 500 mA, non- switchable	
Total payload data rate	up to 8 Mbit/s	

- EP provides all functions of the conventional spacecraft bus
- Ideal platform for small size hosted payloads
- No further subsystems necessary
- Improved anomaly resolution by human in the loop

Grapple fixture for robotic arm operations

External Platform
- Flight Unit

External Platform Payload Configurations

NANORACKS

External Platform End-to-end Service

NANORACKS

External Platform End-to-end Service

- End-to-end communication with your payload covered by the EP Service
 - Console on your own desk
 - Near-real time data link available
- On-board data management by EP-DMS
 - Data storage in NanoRacks' EXPRESS rack in JEM-PM
 - Handling of downlink data by ISS data management system
- Complete ground segment provided by ISS
 - Communication front end MSFC

EPP-based In-orbit Testing & Demonstration

Technology Demonstration		
TRL 1	Basic principle	
TRL 2	Technology concept	
TRL 3	Experimental proof of concept	
TRL 4	Technology validated in lab	
TRL 5	Technology validated in relevant environment	
TRL 6	Technology demonstrated in relevant environment	
TRL 7	System prototype demo in operational environment	
TRL 8	System complete and qualified	
TRL 9	System in operational environment	

- Accelerated improvement of available technologies, system concepts and abilities
- Reduction of the time to market of space-related products
- Cost-optimization of mission scenarios
- Fast demonstrations of mission scenarios

NANORACKS

EPP-based Remote Sensing

ISS attitude-related parameters		
Nominal attitude	Z Nadir (Only 6 hours per year in other z-orientation)	
Operational attitude	Roll, Yaw ±15 deg Pitch +10 to -20 deg	
Attitude accuracy	±3.5 deg per axis	
Attitude estimation	0.5 deg per axis (3 sigma)	
Attitude stability	0.01 deg/s per axis (3 sigma)	

EPP-based Remote Sensing

NANORACKS

External Platform Field of View

Japanese Exposed Facility (JEM-EF) in currently manifested payload configuration.

[National Aeronautics and Space
Administration, JEM EFU Site 4 NanoRacks
FOV View, Manipulator Analysis Graphics
and Interactive Kinematics (MAGIK) Team,
AI 2610, 2012]

External Platform Field of View

Fisheye Field of View at JEM-EF site 4 towards ISS port side with other payload on JEM-EF Site 8.

[National Aeronautics and Space Administration, JEM EFU Site 4 NanoRacks FOV View, Manipulator Analysis Graphics and Interactive Kinematics (MAGIK) Team, AI 2610, 2012]

External Platform Payload Attitude Stability

Payload rotational responses

Conclusion and outlook

Type of mission	External Platform Opportunity
Remote Sensing	 Nadir view with 40 deg swath Unconstrained view from wake to ram direction Maximum contaminant deposition 1x10⁻¹⁴ g cm⁻²s⁻¹
Use of microgravity	Quality up to 10^{-6} g on JEM-EF with single distortion effects
Use of vacuum	Vacuum quality approx. 10^{-5} Pa depending on ISS orbit altitude and solar activity
Meteoroids, space debris monitoring	JEM-EF site no.6 can be made available for ISS ram view
Antenna testing and RF utilization	Frequency coordination with ISSITU license necessary
Propulsive element testing	Pressure vessel use not restrictedNo toxic propellants

- Flight hardware is ready for hand-over from Airbus DS to NanoRacks
- EPP manifested for upload with HTV-5 in August 2015
- First payload mission preparations have started
- Airbus DS will provide a Flight Environment Verification for permanent installation on the EPP, data will be made available
 - Acceleration in 3 axes
 - Temperature
 - Radiation

EPP will be ready for service soon!

What our launching customers do ...

Customer	Payload	Mission scope
Yosemite Space	GumstixTM	 Principal investigator Kathleen Morse, Ph.D. Space-based radiation studies to investigate the feasibility of the Gumstix Computer On Module (COM) technology for use in non-critical computationally intensive space applications
Florida Institute of Technology	Development and Deployment of Charge Injection Device (CID) Sensors for Space- Based Extreme Contrast Ratio Imaging	 Principal investigator Daniel Batcheldor, Ph.D. Space-based test of an innovative and novel Charge Injection Device (CID) imager technology in the space environment
A-76 Technologies	Characterization of A-76 Corrosion Inhibitors in the Space Environment	■ Characterize effectiveness of A-76 corrosion inhibitors and lubricants for metals in the space environment
Honeywell and Morehead State University, Space Sciences Center	TRL7 Validation of Dependable Multiprocessor (DM) Technology	 Principal investigators John Sampson, Ph.D., Benjamin Malphrus, Ph.D. Benchmark performance and radiation-induced computational errors of DM Technology while conducting computationally intensive processing in the space environment
Arquimea Ingeniería, S.L.U. (Spain)	REsettable Hold-Down and Release ACTuator (REACT)	 EU Horizon 2020 funded project with multiple European project partners (Arquimea Ingeniería, S.L.U., EADS CASA Espacio, Surrey Satellite Technology Ltd., AVS, Universidad del Pais Vasco, ESR Technology Ltd., Spacetech GmbH) In-orbit test of SMA-based actuators

Thank you for your attention!

CEO, NanoRacks LLC.

Email: jmanber@nanoracks.com

Ron Dunklee

CEO, Airbus DS Space Systems Inc.

Email: rdunklee@astrium-na.com

Dr. Per Christian Steimle

ISS Commercial Applications

Airbus Defence and Space, Bremen, Germany

Email: per-christian.steimle@astrium.eads.net

