- NANORACKS

Operations: Working Your Experiment

NanoRacks ISS Conference George Washington University February 17, 2015 ralexander@nanoracks.com

Operations Responsibilities

 Operations is most well known for the operations phase, but our work entails so much more than that

Our team is involved in all phases

- Development
- Testing
- Procedure Development
- Crew Training
- Real-Time Operations
- Anomaly Resolution

Development

- When your contract is signed, we work on a Concept of Operations
 - Could be a simple as plugging a module into a platform
 - Gets more complex from there

Testing

- Ops Team performs a test of the hardware on our engineering model platforms as soon as it's available
 - The sooner we have it, the better we can provide feedback concerning necessary modifications

Procedure Development

- Dependent on the complexity of the operation, a crew procedure might need to be developed
 - This process involves the Marshall Payload Ops Center, the Crew Office, the customer, and NanoRacks
- Must allow time in the development process for this cycle

Procedure Development

2.001 NANORACKS CUBESAT DEPLOYER INSTALLATION ON MPEP (ocpcall001005/IMPACT-J) Page 1 of 12 pages

Cycle	Unstow	Location 1	Location 2
1	NanoRacks CubeSat Quad Deployer (two) S/N 1003, 1004 P/N NRCSD-1-Q	Quad Deployer S/N 1003	Quad Deployer S/N 1004
2	NanoRacks CubeSat Quad Deployer (two) S/N 1005, 1006 P/N NRCSD-1-Q	Quad Deployer S/N 1005	Quad Deployer S/N 1006
3	NanoRacks CubeSat Quad Deployer (two) S/N 1007, 1008 P/N NRCSD-1-Q	Quad Deployer S/N 1007	Quad Deployer S/N 1008

OBJECTIVE:

Install NanoRacks CubeSat Deployer hardware onto the MPEP (Multipurpose Experiment Platform).

TOOLS:

Static Wrist Tether 3/16" Hex Head, 1/4" Drive (10-50 in-lbs) Tra Wrench, 1/4" 6" Ext, 1/4" Drive #1 Phillips Screwdriver PARTS:

NanoRacks CubeSat Quad Deployer (two) S/N 1003, 1004 P/N NRCSD-1-Q NanoRacks CubeSat Deployer Electronics Box S/N 1002 P/N NRCSD-501 NanoRacks CubeSat Deployer MLI P/N NRCSD-503 NanoRacks CubeSat Power/Data Cable 1 S/N 1002 P/N NRCSD-505 NanoRacks CubeSat Power/Data Cable 2 S/N 1002 P/N NRCSD-507 Large Mounting Plate P/N NR-NRCSD-D0001-301 Small Mounting Plate P/N NR-NRCSD-D0001-302 Secondary Latch Cable 1 P/N NRCSD-SLC-01

- 1. Setup Camcorder for HD downlink with view of JEM Air Lock Slide Table.
- Video recording is required. As required, refer to <u>PTV 104 HIGH DEFINITION DOWNLINK AVN443 HD</u> <u>ENCODER</u> (US SODF: ISS PTV: Scenes) JEM AL
 - 2. NANORACKS CUBESAT DEPLOYER ELECTRONICS BOX INSTALLATION On SSIPC GO,

2.1 √Static Wrist Tether – donned

2.001 NANORACKS CUBESAT DEPLOYER INSTALLATION ON MPEP (ocpcall001005/IMPACT-J) Page 2 of 12 pages

2.2 Install the Large Mounting Plate onto the MPEP using bolt holes A3, A6, D3 and D6, threading fasteners (four) by hand approximately 4 turns (Figure 2).

 Torque Large Mounting Plate fasteners (four) to 30 in-lbs in a diagonal pattern A3, D6, A6, D3 [(10-50 in-lbs) Trq Wrench, 1/4", 6" Ext, 1/4" Drive, 3/16" Hex Head, 1/4" Drivel,

Figure 3. Small Mounting Plate Installation

2.4 Install the Small Mounting Plate onto the MPEP using bolt holes E3, E6, H3 and H6, threading fasteners (four) by hand approximately 4 turns.

2.5 Torque Small Mounting Plate fasteners (four) to 30 in-lbs in a diagonal pattern E3, H6, E6, H3 [(10-50 in-lbs) Trg Wrench, 1/4", 6" Ext, 1/4" Drive, 3/16" Hex Head, 1/4" Drive] (Figure 3).

Figure 4. Plungers on Small and Large Mounting Plates

MGUENRC8DN001.xml

11Jul14

Procedure Development

 A good procedure that has been properly reviewed on the ground can usually result in success on orbit

Crew Training

- Over the last three years, NASA has changed it's model towards crew training for payload procedures
 - Crew no longer receives training prior to flight
 - Other solutions have been found
- On-orbit training for payloads is now the norm
 - Procedural reviews prior to the operation
 - Training videos
- Moving towards automation to limit crew time used

Real Time Operations

- NanoRacks Operations Team monitors crew activities when necessary
- Downlink data on a daily basis
- We turn the data over as soon as possible

Pictures from Valley Christian School Modules

FerroFluids

Mini Robot

Plant Growth

Crystal Growth

Multi-Gas Monitor Data

NanoRacks CubeSat Deployer

Anomaly Resolution

- Space Research is HARD
- The Operations Team is responsible for investigating the problem and finding a solution
- Done in coordination with the ISS Program Office

Any Questions?